Pro-health Water Technologies

Engineering Plus Water

Smart Monitoring Water Purification & Mineralization

Dispensing System

Engineering Water Mineral Content

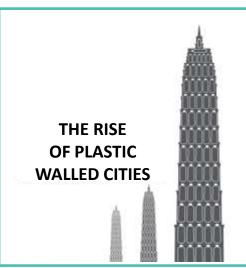
Pain Point

NOW: 95% of food imported overseas

Singapore

Year 2030 : 30% of food to be produced locally Too much sodium

Too much calcium



4

Too much potassium & magnesium

Applications

Agriculture

Sports

Food & Beverage Aquaculture

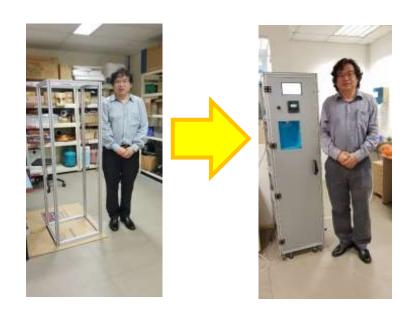
\$0.02

Unique Value Proposition

x38

Highest ROI from drinking water for human consumption because of massive transformative disruption.

Current

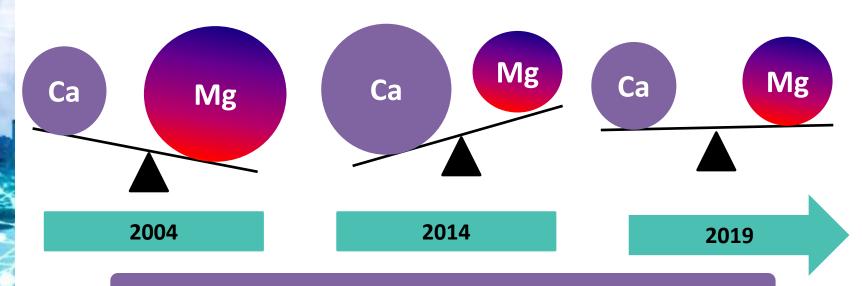


Mineral bottle water

Future

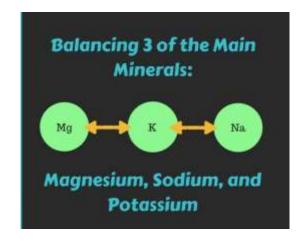
Mountain spring water

Precise control Of Individual Content of Water


Smart Water - Customizable Water per gender, industry, sector, age etc.

Nutrient Unit Mg/L	Commercial Mineral Waters Quality Range	Pro-health Water Mineral Water Quality Range
Total Dissolved Solids (TDS)	250 – 110	130
pH value	5 – 8	7
Calcium (Ca)	4 – 215	21.0
Magnesium (Mg)	2 – 50	11.6
Potassium (K)	1 – 14	3.10
Sodium (Na)	1 – 170	1.15
Sulphate (SO4)	5 – 460	26.1
Bicarbonate	75 – 445	80.4
Chloride	3 – 200	26.1

Nutritional mindset changes over time

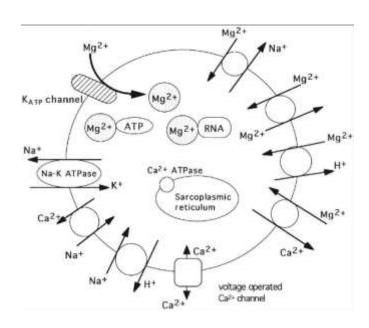


Pro-health Water Technologies

Beyond Ca & Mg, combining all 5 minerals

Ratio Balance as assigned by World Health Organization (WHO)

Precise control Of Individual Content of Water



Mineral Ions Channel

Pro-health Water Technologies

- Beyond Ca & Mg, combining all 5 minerals for ratio balance.
- Too much calcium prevents the uptake of magnesium and hence the optimal balance of these two minerals in water is vital to our health.
- Conductivity gives a idea of the amount of dissolved ions in water.
- Minerals in drinking water are important for the human and animal health, since they appear in ionic form and are generally more easily absorbed in intestines.

A NATURAL MINERAL WATER

✓ Remineralization Technology

Balanced Levels of carbonation

✓ CaCO₃ ✓ H₂O ✓ Carbonated CO₂

Minerality of Water is determined by the minerals in contain. Calcium and Magnesium Carbonate (MgCO₃ and CaCO₃) are the best choice. They give texture but does not overpower minerals like potassium, sodium, sulfate, chloride, bicarbonate ion minerals that the human body needs. **Lead** and **Copper** are removed by **Pro-health Water Technologies** media in all contents and concentrations.

Without changing its Orientation (pH)

pH of the water is most important factor in all "<u>Drinking waters</u>". The **pH** (for **p**otential **H**ydrogen) if acidic or alkaline is not recommended for drinking or making whatsoever drinks. Natural waters (pH 7.0) is best for human consumption. They tastes neither sour nor bitter but best for human tongue.

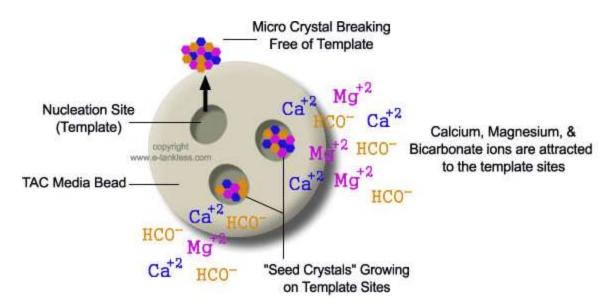
Structured Water

Definition: When water is unadulterated means only structured as follows

$$Ca(HCO_3)_2 \rightarrow CaCO_3 + H_2O + CO_2$$

Nothing added or subtracted and 100% natural.

This in turn means this H₂O (water molecule) has its outer electron shell intact, i.e. in equilibrium and without a charge. This is a structural water, a water without the change in pH, without adding high sodium content, a water that you will feel and see can penetrate the body's cells with ease and therefore cleanse your cells and re-hydrate your body's cells much more easily. It is this cleansing of your cells that give you a better, healthier and happier life.


TDS as a function of cell hydration property

The optimal **TDS** (Minerals) the greater the cell hydrating properties of the water. All healthy cells are surrounded by ("structural water"). And all natural waters are naturally carbonated those are treated with **Prohealth Water Technologies**. All mineral waters with its unique mineral composition those are reputed to have beneficial properties for health.

Nucleation Assisted Crystallization

- Nucleation Assisted Crystallization (NAC) Is different from other crystallization process of water crystallization. A solid heterogeneous catalyst that reacts with a water and gaseous/solutions.
- The reaction occurs on the **mineral** surface which is a surface coated on Calcium and beads. The reactants are absorbed onto the catalyst **Pro-health Water Technologies** surface at the "active sites" cracked surface. These reactants are physically & weakly adsorbed. When the high concentrations of the reactants are very close to each other and weakening the original molecular bonds within the reactants ions are separated in seconds with a great success of "fruitful" collision.

Hydrogen Carbonate Ion (HCO₃-)

The hydrogen carbonate ion as HCO₃

Ca(HCO₃)₂
$$\xrightarrow{\text{Pro-health Water}}$$
 CaCO₃ + H₂O + CO₂

insoluble calcium carbonate, Pure Water and CO₂ as gas and on surface of **Pro-health Water Technologies** the carbonate ions CO₃ acting as a base, gains

protons to form

$$H_2O + CO_2 + Ca^{2+}$$

these are separated on the surface of **Pro-health Water Technologies**, CO₂ in this formula is acting as supersaturated CO₂ and the Ca starts Nucleation process and becomes crystals.

Hydrogen Carbonate Ion (HCO₃-)

Incidentally, H₂O is a neutral oxide because its pH is 7. Logistically the oxonium/hydrated proton ion concentration equals to the hydroxide ion concentration.

 $2H_2O \leftrightarrow (H_3O^+) + (OH^-)$ (And this is a scientific fact)

The strength of adsorption is very important to have a very smooth surface.

WATER ← → Oxonium / Hydrogen ion + Hydroxide ion

But, in this reaction, water acts as but both ACID and BASE i.e, one water molecule acid donates a proton to another water molecule which becomes an oxonium ion (hydrated proton) and another water molecule (base) simultaneously accepts a proton!

<u>Therefore</u>, water is an amphoteric oxide: That is it reacts as both a proton acceptor and a proton donator.

Hydrogen Carbonate Ion (HCO₃-)

Now the hydrogen carbonate ion HCO_3^- Can act as a carbonate ion both as ACID with a Base or act as a base with an acid, such behavior is described as amphoteric

HCO₃- acting as a base, accepting a proton from an acid.

$$HCO_3^- + OH^- \longrightarrow H_2O + CO_2$$

HCO₃- acting as an acid donating a proton to the hydroxide ion base

MORE SIMPLE: the reactant Ca(HCO₃)₂ bounding to the **Prohealth Water Technologies** catalyst surface (chemisorptions/adsorption) must be very strong to apart reactant ions as fast as possible but enough to handle all ions and the products to escape from the **Pro-health Water Technologies** surface its called (desorption process).

Nucleation → Adsorption

Assisted → Desorption

Crystallization → in one process

Independent Reputable Laboratory Test Reports and COI's Validation

Test Reports from Tap water

Setson Services Pte Ctd

(This Happin is major) where to the born, 5 cookings not not below)

5 response 608925 Tel. (95) 6586 7777 Fee 195; 6006, 1719. Date: 38/12/2019 Harming in Investigation

Your Ref : -Page 1 of 1

Our Ref. : EN8500000720/LWW/I

Analysis of water samples submitted by Ngce Ann Polytechnic on

20/12/2019 and testing commenced on 20/12/2019.

Neec Ann Polytechnic Tested For

Block 39-01-06 535 Chemens Road Singapore 599489 Attn : Mr. Gerald Tee Meng Seng

One (01) water sample was received. Sample Reference

**					_	
к	ε	з	ш	œ	3	
ش						

Subject

Lesults 1	1000	- Carrierous and	Sample	
Test Parameter	Unit	Test Method	UF (17/12/19)	
Bicarbonate as HCO ₁	mg/L	APHA: Pt 4500-CO ₂ (D)	19.4	
Chloride as CI	mg/L	APHA: Pt 4110B	19.3	
Sulphate as SO,	mg/L	APHA: Pt 4110B	15.0	
Calcium as Ca	mg/L	APHA: Pt 3120B	16.2	
Magnesium as Mg	mg/L	APIIA: Pt 31208	1.50	
Sodium as Na	mg/L	APHA: Pt 3120B	4.63	
Polassiam se K	mg/L	APILA: Pt 3120B	7,45	

APHA is a Standard Method for the Determination of Water and Waste Water (APHA 23rd Edition : 2017).

The tasted result applies only to the sample as received by the laboratory.

LEE WEI WAH EXECUTIVE CHEMEST

BIOLOGICAL AND CHEMICAL TECHNOLOGY DIVISION

(This Report is insued subsect to the torns A conditions set out below)

Betsco Services Pto Lid 18 Sebon Cottlers Clescons Simpapore 606025

Fav: (65) 0566 7718 Date: 36/12/2019 manufactor removes

Our Ref : EN8500090720/LWW/2 Page 1 of 1

Analysis of water samples submitted by Ngee Ann Polytechnic on Subject

20/12/2019 and testing commenced on 20/12/2019.

Tested For Nger Ann Polytechnic

Block 39-01-06 555 Clementi Rood Singspore 599489

Attn : Mr. Gerald Tee Mong Song

Sample Reference One (01) water sample was received.

Your Ref : -

Test Parameter	2000	en many transporter	Sample
	Unit	Test Method	RO (17/12/19)
Bicarbonate as HCO ₁	mg/L	APHA: Pt 4500-CO ₁ (D)	<21
Chloride as Cl	mg/L	APHA: Pt 4110B	1.74
Sulphate as SO ₄	mg/L	APHA: Pt 4110B	<11
Calcium as Ca	mg/L	APHA: Pt 3120B	0.36
Magnesium as Mg	mg/L	APHA: Pt 3120B	0.036
Sodium as Na	ing/L	APHA: Pt 3120B	1.14
Potassium as K	mg/L	APHA : Pt 3120B	1.37

APHA is a Standard Method for the Determination of Water and Waste Water (APHA 23" Edition : 2017)

2. The tested result applies only to the sample as received by the laboratory

3. † = Not Detectable (The reported values are less than (<) the detection limits of the test methods)

EXECUTIVE CHEMIST

LEE WET WALL ASSISTANT MANAGER

BIOLOGICAL AND CHEMICAL TECHNOLOGY DIVISION

Independent Reputable Laboratory Test Reports and COI's Validation

Test Reports from RO to Pro-health Water

TEST REPORT

WWW.betsub.com

(This Report is insued subsect to the terms & conditions set out below)

Setsco Services Pto Ltd 18 Seban Garters Clescore Simpapore 606025 Fav: (65) 0566 7718

Date: 36/12/2019 ----Our Ref: EN8500090720/LWW/2

Page 1 of 1

Subject

Analysis of water samples submitted by Ngee Ann Polytechnic on 20/12/2019 and testing commenced on 20/12/2019.

Tented For

Nger Ann Pulytechnic Block 39-01-06 535 Clementi Rood Singspore 599459

Atta : Mr. Gerald Tee Meng Seng

Sample Reference : One (01) water sample was received.

Results :	lane.		Sample RO (17/12/19)	
Test Parameter	Unit	Test Method		
Bicarbonate as HCO ₁	mg/L	APHA: Pt 4500-CO ₁ (D)	<21	
Chloride as Cl	mg/L	APHA: Pt 4110B	1.74	
Sulphate as SO ₄	mg/L	APHA: Pt 4110B	<11	
Calcium as Ca	mg/L	APHA: Pt 3120B	0.36	
Magnesium as Mg	mg/L	APHA: Pt 3120B	0.036	
Sodium as Na	ing/L	APHA: Pt 3120B	1.14	
Potassium as K	mg/L	APHA : Pt 3120B	1.37	

APHA is a Standard Method for the Determination of Water and Waste Water (APHA 23" Edition : 2017)

The tested result applies only to the sample as received by the laboratory

3. † = Not Detectable (The reported values are less than (<) the detection limits of the test methods)

EXECUTIVE CHEMIST

LEE WET WALL ASSISTANT MANAGER

BIOLOGICAL AND CHEMICAL TECHNOLOGY DIVISION

TEST REPORT

(This Report is innered subject to the terror & conditions not but below)

Setton Services Pie Lid Hi Topus Gardeni Stescen

Segapore 638905 Sei - 1951 6566 7777 Fax (65) 6566 7715 WWW SHELD CON

Date: 30/12/2019 (committee to receive Your Ref : -

Our Ref: EN8500090720/L/WW/4

Subject

Analysis of water samples submitted by Ngee Ann Polytechnic on

20/12/2019 and testing commenced on 20/12/2019.

Tested For

Ngce Ann Polytechnic Block 39-01-06 535 Clement Road Singspore 599489

Atm : Mr. Gerald Tee Meng Seng

One (01) water sample was received. Sample Reference

1	- 1000	1 - 20 00 3 0 00 0	Sample	
Test Parameter	Unit	Test Method	MRO-3 (19/12/19)	
Bicarbonate as HCO ₃	mg/L	APHA: Pt 4500-CO ₂ (D)	80.4	
Chloride as CI	mg/L	APMA: Pt #110B	26.1	
Sulphate as SO ₄	mg/L	APBA: Pt 4110B	<12	
Calcium as Ca	mg/L	APHA : Pt 3120B	21.0	
Magnesium as Mg	mg/L	APHA : Pt 3120H	11.6	
Sodium as Na	mg/L	APHA: Pt 5120B	1.15	
Potassium as K	mg/L	APHA: Pt 3120B	3.10	

APHA is a Standard Method for the Determination of Water and Waste Water (APHA 23rd Edition : 2017).

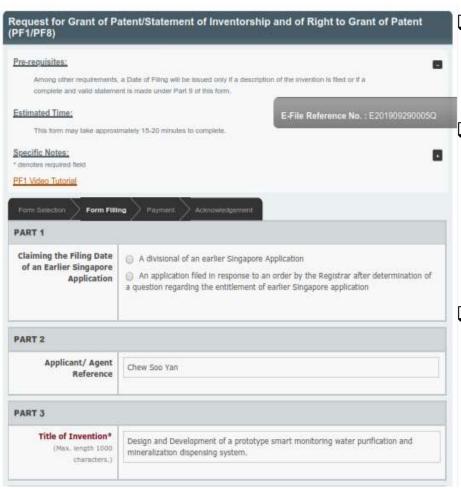
The tested result applies only to the sample as received by the laboratory

3. † - Not Detectable (The reported values are less than (<) the detection limits of the test methods)

MARIVIENTANA GAPUD EXECUTIVE CHEMIST

LEE WEI WAR ASSISTANT MANAGER

BIOLOGICAL AND CHEMICAL TECHNOLOGY DIVISION

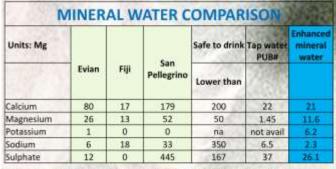


Patent Filed

Pro-health Water Technologies

Trade Secrets:

- A proprietary ratio of calcium and magnesium in drinking water was determined.
- IP ValueLab, a member of the Intellectual Property office of Singapore (IPO) Family points out that Prohealth Water Technology's intangible ssets are gnerally well procted.
- The agency gives a high rating of 6 out of 7.



High Quality Mineral Water is Expensive

Pro-health Water Technologies

Pro-health Water **Technologies**

High

end

Purified water & Natural water

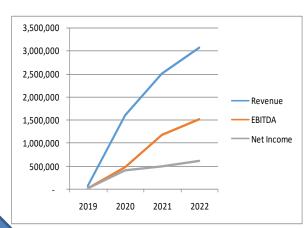
Mineral water

Traction: KPI metrics and Forecast from 2019/2020

Pro-health Water Technologies	2019	2020	2021	2022
Revenue	60,000	1,600,000	2,500,000	3,060,000
COGS	33,063	700,000	800,000	900,000
Gross Revenue	26,937	900,000	1,700,000	2,160,000
(Gross Margin %)	45%	56%	68%	71%
SG&A	6,000	420,000	520,000	648,800
EBITDA	20,937	480,000	1,180,000	1,511,200
(Operating Margin %)	35%	30%	47%	49%
Net Income	18,000	400,000	500,000	612,000
(Net Margin %)	30%	25%	20%	20%

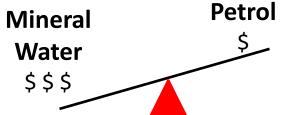
The drinking water market

China is world's largest market for bottled water


Bottled water sales in China

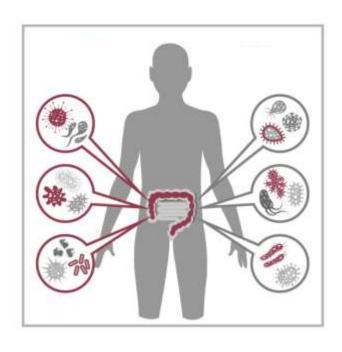
US\$1 billion (yr 2000)

US\$24 billion (yr 2019)



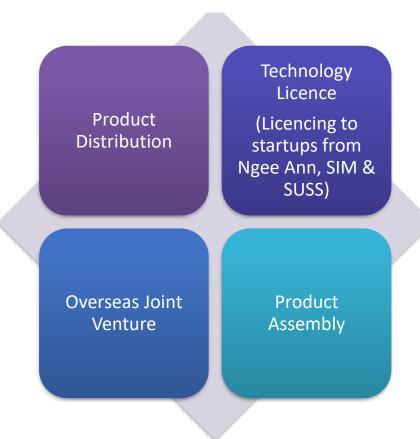
Water: Our Most Precious Resource

Real Mineral Water are more expensive than petrol.



Kashin-Beck Disease

- Magnesium encourages digestive tract to relax.
- Magnesium help to balance stomach acid levels.



Business and Collabor Model

flex

Go-to-Market Strategy

Target upper or middle class

Willing to pay additional price for health products

Program-led

3 Go-to-Market Channels to enter Wuhan market

Ego Coffee in Wuhan:

Competitor Analysis

First in the World Second to none

Competing Technologies

Our Technologies

Diverse Range of Contents in Water

- No precise control
- •Control two nutrients
- Prolonged / cumbersome process
- •Expensive treatments

- Precise control
- •Control four or more nutrients
- •Single step process
- •Cost effective treatments

Nutrients/L	evian Evian	Fiji	San Pellegrino
Calcium	80mg	17mg	164mg
Magnesium	26mg	13mg	49mg
Potassium	1mg	0mg	0mg
Sodium	6mg	18mg	31mg
Sulphate	14mg	0mg	403mg

Smart Water

- Customizable

Pro-health Water Technologies

Water per gender, industry, sector, age etc.

9 billion tonnes of plastic have been made

US\$20 billion smart water market

Reduce Carbon Footprint

Future

Singapore

Pro-health Water Reduce Plastic Bottles

San Francisco airport to ban sale of plastic bottles

Benefit Humanity: Optimal Growth

Pro-health Water Technologies

- pH: 5.8-8.5
- Total Dissolved Solids (TDS): 100-260 mg/L

- pH : 6.5-8.5
- Dissolved oxygen: 7 mg/L
- Total Dissolved Solids (TDS) : 250-500 mg/L

Singapore sets 30% goal for home-grown food by 2030 THE STRA

Pro-health Water Technologies

by 2030 THE STRAITS TIMES

Imported food from

over **90% 70%**

Urban Farmers

Singapore is like a ship

Validation

Pro-health Water Technologies

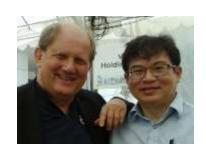
Validated by Enterprise Singapore with funding support

\$4,900

Enterprise Development Grant

\$43,780

Milestones & Team



Pro-health Water Technologies

Chew Soo Yan, NTU, Computer Eng, 1997.

- **☐** Pivoted into Water Technologies for 15 years.
- Succeeded in producing high-end conditioned water mass production in an overseas water plant.
- ☐ Produced richest potable mineralized water with minimal environmental impact

Lynn Wong, Masters of Business, Curtin University of Technology, 1998

☐ 15 years of experience overseeing Finance, Marketing, Public Relations in three listed companies.

Our Contact

Sam Chew Soo Yan, Founder

Whatsapp: 8777-9237

Email: chewsooyan@gmail.com

Lynn Wong, Manager

Whatsapp: 8718-0291

Email: lynnwongbd@gmail.com

JTC LaunchPad @ One-North 79 Ayer Rajah Crescent, #04-04, Singapore 139955

THANK YOU